Assessment of the Performance of Aquaponics and its Uptake for Integrated Fish and Plant Farming in Sub-Saharan Africa

Authors

  • J. S. Ani Department of Fisheries and Aquatic Sciences, School of Natural Resources Management, University of Eldoret, P. O. Box 1125-3100 Eldoret, Kenya
  • F. O. Masese Department of Fisheries and Aquatic Sciences, School of Natural Resources Management, University of Eldoret, P. O. Box 1125-3100 Eldoret, Kenya
  • J. O. Manyala School of Spatial Planning and Natural Resource Management, Jaramogi Oginga Odinga University of Science and Technology, P. O. Box 210 Bondo, Kenya
  • K. Fitzsimmons Department of Soil Water and Environmental Science, College of Agriculture and Life Sciences, The University of Arizona, P. O. Box 210038, Tucson, Arizona 85721-0038

DOI:

https://doi.org/10.2200/aerj.v4i2.134

Keywords:

Aquaponics, Fish farming, Waste water, water quality, vegetables, Nutrient Cycling

Abstract

Aquaponics is an innovative and sustainable fish and vegetable production system that has  the potential to contribute to food security and livelihoods of many people in sub-Saharan  African (SSA) countries that are experiencing pervasive droughts, declining crop yields, soil  pollution, and climate change. Although an emerging innovation in many parts of the world,  aquaponics has a huge potential for adoption in SSA countries. Aquaponics, as a technology,  is based on the concept of efficient nutrient retention, reduction in water use, and waste  discharge to the environment. Aquaponics is also expected to improve profitability by  simultaneously producing two cash crops (mainly fish and vegetables). Several freshwaters,  marine, and brackish water fishes can be reared in aquaponic systems. A variety of plants can  also be grown in combination with fishes, ranging from green leafy vegetables and herbs to  fruit plants. Plants utilize nutrients from fish excretion and egestion, and remnants of feeds,  and in the process reduce the amount that would otherwise be released in wastewater. To  achieve optimum fish and plant growth, maintaining optimal water quality conditions in  aquaponic systems is a prerequisite. The amount of nutrients supplied in the system is directly  related to the amount of feeds given to fish and the amount of waste produced by fish during  excretion and egestion. This review shows that despite the huge potential of aquaponics to  improve food security and livelihoods of people in SSA, its adoption is very limited. There is  a need for investment in the research and training of farmers and practitioners on the practice  and benefits of aquaponics as a sustainable food production system. This review highlights  the performance and operation of aquaponics and assesses the constraints to its adoption in  SSA countries, including Kenya. The review also identifies knowledge gaps that need to be  addressed and gives recommendations on how to make aquaponics more sustainable as a  food production system in SSA.

References

Akter, B, Chakraborty, S. C and Salam, M. A. (2018). Aquaponic production of Tilapia (Oreochromis niloticus).

Alatorre-Jacome, O., Garcia, T, F., Soto-Zarazúa, G. M. and Rico-García, E. (2012). Techniques to assess fish productivity in aquaculture farms and small fisheries: an overview of algebraic methods. Journal of Applied Sciences, 12(9), 888-892.

Anantharaja, K., Mohapatra, B. C., Pillai, B. R., Kumar, R., Devaraj, C. and Majhi, D., 2017. Growth and survival of climbing perch, Anabas testudineus in Nutrient Film Technique (NFT) Aquaponics System. Int. J. Fish. Aquat. Stud, 5(4), pp.24-29.

Ani, J. S., Manyala, J. O., Masese, F. O. and Fitzsimmons, K. (2021). Effect of stocking density on growth performance of monosex Nile Tilapia (Oreochromis niloticus) in the aquaponic system integrated with lettuce (Lactuca sativa). Aquaculture and Fisheries. In press.

Bailey, D. S. and Ferrarezi, R. S. (2017). Valuation of vegetable crops produced in the UVI Commercial Aquaponic System. Aquaculture Reports, 7, 77-82.

Bailey, D. S., Rakocy, J. E., Cole, W. M., Shultz, K. A. and St Croix, U. S. (1997). Economic analysis of a commercial-scale aquaponic system for the production of tilapia and lettuce. In Tilapia aquaculture: proceedings of the fourth international symposium on Tilapia in aquaculture, Orlando, Florida (pp. 603- 612).

Baßmann, B., Harbach, H., Weißbach, S. and Palm, H. W. (2020). Effect of plant density in coupled aquaponics on the welfare status of African catfish, Clarias gariepinus. Journal of the World Aquaculture Society, 51(1), 183- 199.

Birolo, M., Bordignon, F., Trocino, A., Fasolato, L., Pascual, A., Godoy, S., Nicoletto, C., Maucieri, C. and Xiccato, G., 2020. Effects of stocking density on the growth and flesh quality of rainbow trout (Oncorhynchus mykiss) reared in a low-tech aquaponic system. Aquaculture, 529, p.735653.

Blancheton, J. P., Attramadal, K. J. K., Michaud, L., d’Orbcastel, E. R. and Vadstein, O. (2013). Insight into bacterial population in aquaculture systems and its implication. Aquacultural Engineering, 53, 30-39.

Boyd, C.E., Li, L. and Brummett, R., 2012. Relationship of freshwater aquaculture production to renewable freshwater resources. Journal of Applied Aquaculture, 24(2), pp.99- 106.

Dedium, L., Cristea, V. and Xiaoshuan, Z. (2012). Waste production and valorization in an integrated aquaponic system with bester and lettuce. African Journal of Biotechnology, 11(9), 2349–2358.

Delaide, B. (2017). A study on the mineral elements available in aquaponics, their impact on lettuce productivity, and the potential improvement of their availability (Doctoral dissertation, Université de Liège, Liège, Belgique).

Doughty, C. R. and McPhail, C. D. (1995). Monitoring the environmental impacts and consent compliance of freshwater fish farms. Aquaculture Research, 26(8), 557-565.

Edaroyati, M. W. P., Aishah, H. S. and Al Tawaha. A. M. (2017). Requirements for inserting intercropping in aquaponics system for sustainability in agricultural production system. Agronomy Research, 15(5), 2048– 2067.

Ellis, T., North, B., Scott, A. P., Bromage, N. R., Porter, M. and Gadd, D. (2002). The relationships between stocking density and welfare in farmed rainbow trout. Journal of fish biology, 61(3), 493-531.

El‐Sayed, A. F. M. (2002). Effects of stocking density and feeding levels on growth and feed efficiency of Nile tilapia (Oreochromis niloticus L.) fry. Aquaculture Research, 33(8), 621-626.

Endut, A., Jusoh, A., Ali, N., Wan Nik, W. N. S. and Hassan, A. (2009). Effect of flow rate on water quality parameters and plant growth of water spinach (Ipomoea aquatica) in an aquaponic recirculating system. Desalination and Water Treatment, 5(1-3), 19-28.

Endut, A., Lananan, F., Jusoh, A. and Cik, W. N. W. (2016). Aquaponics recirculation system: A sustainable food source for the future water conserves and resources. Malaysian Journal of Applied Sciences. 1: 1-12.

Engle, C. R. (2015). Economics of Aquaponics. SRAC publication - southern regional aquaculture centre, No. 5006(5006), 4.

FAO. 2014. The State of World Fisheries and Aquaculture 2014. Rome. 223 pp.

FAOSTAT, F. (2016). FAOSTAT statistical database. Publisher: FAO (Food and Agriculture Organization of the United Nations), Rome, Italy.

Fatima, S., Izhar, S., Usman, Z., Rashid, F., Kanwal, Z., Jabeen, G. and Latif, A.A., 2018.

Effects of high stocking density on condition factor and profile of free thyroxine and cortisol in Catla catla (Hamilton, 1822) and Labeo rohita (Hamilton, 1822). Turkish Journal of Fisheries and Aquatic Sciences, 18(1), pp.217-221.

Gichana, Z., Liti, D., Wakibia, J., Ogello, E., Drexler, S., Meulenbroek, P., Ondiba, R., Zollitsch, W. and Waidbacher, H. (2019 a). Efficiency of pumpkin (Cucurbita pepo), sweet wormwood (Artemisia annua), and amaranth (Amaranthus dubius) in removing nutrients from a smallscale recirculating aquaponic system. Aquaculture International, 27(6), pp.1767-1786.

Gichana, Z., Meulenbroek, P., Ogello, E., Drexler, S., Zollitsch, W., Liti, D. and Waidbacher, H. (2019 b). Growth and Nutrient Removal Efficiency of Sweet Wormwood (Artemisia annua) in a Recirculating Aquaculture System for Nile Tilapia (Oreochromis niloticus). Water, 11(5), 923.

Goddek, S. (2017). Opportunities and challenges of multi-loop aquaponic systems (Doctoral dissertation, Wageningen University).

Goddek, S., Delaide, B., Mankasingh, U., Ragnarsdottir, K. V., Jijakli, H. and Thorarinsdottir, R. (2015). Challenges of sustainable and commercial aquaponics. Sustainability. 7: 4199-4224.

Goddek, S., Joyce, A., Kotzen, B. and Dos Santos, M. (2019). Aquaponics and global food challenges, Aquaponics Food Production Systems. Springer, Cham. pp. 3- 17.

Greenfeld, A., Becker, N., McIlwain, J., Fotedar, R. and Bornman, J. F. (2019). Economically viable aquaponics? Identifying the gap between potential and current uncertainties. Reviews in Aquaculture, 11(3), 848-862.

Haug, R. T. and P. L McCarty, (1972). Nitrification with submerged filters. J. Water Pollution. Control Fed., 44: 20-86.

Hu, Z., Lee, J. W., Chandran, K., Kim, S. and Khanal, S. K. (2012). Nitrous oxide (N2O) emission from aquaculture: a review. Environmental science & technology, 46(12), 6470-6480.

Hussain, T., Verma, A. K., Tiwari, V. K., Prakash, C., Rathore, G., Shete, A. P. and Nuwansi, K. K. T. (2014). Optimizing koi carp, Cyprinus carpio var. koi (Linnaeus, 1758), stocking density, and nutrient recycling with spinach in an aquaponic system. Journal of the World Aquaculture Society, 45(6), 652-661.

Jaeger, C., Foucard, P., Tocqueville, A., Nahon, S. and Aubin, J. (2019). Mass balanced based LCA of a common carp-lettuce aquaponics system. Aquacultural Engineering, 84 (November 2018), 29–41. Elsevier. Retrieved from https://doi.org/10.1016/j.aquaeng.2018.11.00 3

Johnson, M. (2016). Sustainable Backyard Gardening: An Investigation into the Feasibility of Implementing a Small-Scale Aquaponic System for Household Consumption (Doctoral dissertation, University of Colorado at Boulder).

Joyce, A., Goddek, S., Kotzen, B. and Wuertz, S. (2019). Aquaponics: Closing the Cycle on Limited Water, Land and Nutrient Resources, Aquaponics Food Production Systems. Springer, pp. 19-34.

Kara, M. H., Lacroix, D., Rey-Valette, H., Mathé, S. and Blancheton, J. P. (2018). Dynamics of research in aquaculture in North Africa and support for sustainable development and innovation. Reviews in Fisheries Science & Aquaculture. 26: 309-318.

Karimanzira, D., Keesman, K., Kloas, W., Baganz, D. and Rauschenbach, T. (2017). Efficient and economical way of operating a recirculation aquaculture system in an aquaponics farm. Aquaculture Economics and Management, 21(4), 470–486. Taylor & Francis. Retrieved from http://dx.doi.org/10.1080/13657305.2016.12 59368.

Keuter, S., Kruse, M., Lipski, A. and Spleck, E. (2011). Relevance of Nitrospira for nitrite oxidation in a marine recirculation aquaculture system and physiological features of a Nitrospira marina-like isolate. Environmental Microbiology, 13(9), 2536- 2547. doi: 10.1111/j.1462- 2920.2011.02525.x.

Kledal, P. R. and Thorarinsdottir, R. (2018). Aquaponics: A Commercial niche for Sustainable Modern Aquaculture in the book Sustainable Aquaculture.

Kloas, W., Groß, R., Baganz, D., Graupner, J., Monsees, H., Schmidt, U., Staaks, G., Suhl, J., Tschirner, M. and Wittstock, B. (2015). A new concept for aquaponic systems to improve sustainability, increase productivity, and reduce environmental impacts. Aquaculture Environment Interactions. 7: 179-192.

Knaus, U. and Palm, H. W. (2017). Effects of the fish species choice on vegetables in aquaponics under spring-summer conditions in northern Germany (Mecklenburg Western Pomerania). Aquaculture, 473, 62-73.

Kwon, I. and Kim, T. (2020). Analysis of land based circular aquaculture tank flow field using computational fluid dynamics (CFD) simulation. Journal of the Korean Society of Fisheries and Ocean Technology. 56: 395- 406.

Lambert, Y. and Dutil, J. D. (2001). Food intake and growth of adult Atlantic cod (Gadus morhua L.) reared under different conditions of stocking density, feeding frequency and size-grading. Aquaculture, 192(2-4), pp.233- 247.

Lennard, W. and Goddek, S. (2019). Aquaponics: The Basics, Aquaponics Food Production Systems. Springer. pp. 113-143.

Li, C., Zhang, B., Luo, P., Shi, H., Li, L., Gao, Y., Lee, C. T., Zhang, Z. and Wu, W. M. (2019). Performance of a pilot-scale aquaponics system using hydroponics and immobilized biofilm treatment for water quality control. Journal of Cleaner Production, 208, pp.274- 284.

Licamele, J. (2009). Biomass production and nutrient dynamics in an aquaponics system (Doctoral dissertation, The University of Arizona).

Liu, Y., Liu, H., Wu, W., Yin, J., Mou, Z. and Hao, F. (2019). Effects of stocking density on growth performance and metabolism of juvenile Lenok (Brachymystax lenok). Aquaculture, 504, 107-113.

Love, D. C., Uhl, M. S. and Genello, L. (2015). Energy and water use of a small-scale raft aquaponics system in Baltimore, Maryland, United States. Aquacultural Engineering, 68, 19-27.

Luo, X., Yan, Q., Wang, C., Luo, C., Zhou, N. and Jian, C. (2015). Treatment of ammonia nitrogen wastewater in low concentration by two-stage ozonization. International Journal of Environmental Research and Public Health, 12(9), 11975–11987.

Makori, A. J., Abuom, P. O., Kapiyo, R., Anyona, D. N. and Dida, G. O. (2017). Effects of water

physico-chemical parameters on tilapia (Oreochromis niloticus) growth in earthen ponds in Teso North Sub-County, Busia County. Fisheries and Aquatic Sciences, 20(1), 1–10.

Maucieri, C., Nicoletto, C., Zanin, G., Birolo, M., Xiccato, G., Sambo, P. and Borin, M. (2020). Nitrogen budget in recirculating aquaponic systems with different fish stocking density. Italian Journal of Agronomy, 15(3).

Mchunu, N., Lagerwall, G. and Senzanje, A. (2018). Aquaponics in South Africa: Results of a national survey. Aquaculture Reports, 12, 12-19.

Mchunu, N., Lagerwall, G. and Senzanje, A. (2019). Aquaponics model specific to South African conditions. South African Journal of Agricultural Extension, 47 (1), pp.73-91.

Minoo, C. M., Ngugi, C. C., Oyoo-Okoth, E., Muthumbi, A., Sigana, D., Mulwa, R. and Chemoiwa, E. J. (2016). Monitoring the effects of aquaculture effluents on benthic macroinvertebrate populations and functional feeding responses in a tropical highland headwater stream (Kenya). Aquatic Ecosystem Health and Management. 19,4: 431-440

Mohapatra, B. C., Chandan, N. K., Panda, S. K., Majhi, D. and Pillai, B. R. (2020). Design and development of a portable and streamlined nutrient film technique (NFT) aquaponic system. Aquacultural Engineering, 90: 1- 23.https://doi.org/10.1016/j.aquaeng.2020.10 2100

Nozzi, V., Graber, A., Schmautz, Z., Mathis, A. and Junge, R. (2018). Nutrient Management in Aquaponics: Comparison of Three Approaches for Cultivating Lettuce, Mint and Mushroom Herb. Agronomy, 8(3), 27.

Nuwansi, K. K. T., Verma, A. K., Chandrakant, M. H., Prabhath, G. P. W. A. and Peter, R.M. (2021). Optimization of stocking density of koi carp (Cyprinus carpio var. koi) with gotukola (Centella asiatica) in an aquaponic system using phytoremediated aquaculture wastewater. Aquaculture, 532, https://doi.org/10.1016/j.aquaculture.2020.73

Oladimeji, A. S., Olufeagba, S. O., Ayuba, V. O., Sololmon, S. G. and Okomoda, V. T. (2020). Effects of different growth media on water quality and plant yield in a catfish-pumpkin aquaponics system. Journal of King Saud University-Science, 32(1), 60-66.

Oliveira, V., Martins, P., Marques, B., Cleary, D. F., Lillebø, A.I. and Calado, R. (2020). Aquaponics using a fish farm effluent shifts bacterial communities profile in halophytes rhizosphere and endosphere. Scientific reports. 10: 1-11.

Opiyo, M. A., Githukia, C. M., Munguti, J. M. and Charo-Karisa, H. (2014). Growth performance, carcass composition and profitability of Nile tilapia (Oreochromis niloticus L.) fed commercial and on-farm made fish feed in earthen ponds. International Journal of Fisheries and Aquatic Studies, 1:12-17

Palm, H. W., Knaus, U., Appelbaum, S., Goddek, S., Strauch, S. M., Vermeulen, T., Jijakli, M. H. and Kotzen, B. (2018). Towards commercial aquaponics: a review of systems, designs, scales and nomenclature. Aquaculture international. 26, 813-842.

Palm, H. W., Bissa, K. and Knaus, U. (2014). Significant factors affecting the economic sustainability of closed aquaponic systems. Part II: fish and plant growth. Aquaculture, Aquarium, Conservation & Legislation, 7 (3), pp.162-175.

Pfeiffer, T. J., Osborn, A. and Davis, M. (2008). Particle sieve analysis for determining solids removal efficiency of water treatment components in a recirculating aquaculture system. Aquacultural Engineering. 39: 24-29.

Pinho, S. M., de Mello, G. L., Fitzsimmons, K. M. and Emerenciano, M. G. C. (2018). Integrated production of fish (pacu Piaractus mesopotamicus and red tilapia Oreochromis sp.) with two varieties of garnish (scallion and parsley) in aquaponics system. Aquaculture international, 26(1), pp.99-112.

Premuzic, Z., Villela, F., Garate, A. and Bonilla, I. (2004). Light supply and nitrogen fertilization for the production and quality of butterhead lettuce. In VII International Symposium on Protected Cultivation in Mild Winter Climates: Acta Horticulturae, 659, 671–678.

Rahman, M. M. (2015). Role of common carp (Cyprinus carpio) in aquaculture production systems. Frontiers in Life Science, 8(4), 399– 410. Retrieved from https://doi.org/10.1080/21553769.2015.1045 629

Rahmatullah, R., Das, M. and Rahmatullah, S. M. (2010). Suitable stocking density of tilapia in an aquaponic system. Bangladesh Journal of Fisheries Research, 14(1-2), 29-35.

Rakocy, J. E. (2012). Aquaponics: integrating fish and plant culture. Aquaculture production systems, 1, 343-386.

Rakocy, J. E., Bailey, D. S., Shultz, R. C. and Thoman, E. S. (2004). Update on tilapia and vegetable production in the UVI aquaponic system. In New dimensions on farmed Tilapia: Proceedings of the sixth international symposium on Tilapia in Aquaculture, held September (pp. 12-16).

Rakocy, J. E., Masser, M. P. and Losordo, T. M. (2006). Recirculating aquaculture tank production systems: aquaponics—integrating fish and plant culture. Southern Regional Aquaculture Center, publication no. 454.

Rakocy, J., Masser, M. P. and Losordo, T. (2016). Recirculating aquaculture tank production systems: aquaponics-integrating fish and plant culture. Oklahoma State University Extension :Id: SRAC-454

Rakocy, J., Shultz, R. C., Bailey, D. S. and Thoman, E. S. (2003). February. Aquaponic production of tilapia and basil: comparing a batch and staggered cropping system. In South Pacific Soilless Culture Conference-SPSCC 648 (pp. 63-69).

Rayhan, M. Z., Rahman, M. A., Hossain, M. A., Akter, T. and Akter, T. (2018). Effect of stocking density on growth performance of monosex tilapia (Oreochromis niloticus) with Indian spinach (Basella alba) in a recirculating aquaponic system. International Journal of Environment, Agriculture and Biotechnology, 3(2), 343–349.

Rono, K., Manyala, J. O., Lusega, D. M., Sabwa J. S., Yongo, E., Ngugi, C. C., Fitzsimmons, K. and Egna, H. (2018). Growth performance of spinach (Spinacia oleracea) on diets supplemented with iron-amino acid complex in an aquaponic system in Kenya. International Journal of Research Science & Management, 5(7), 117–127. http://doi.org/10.5281/zenodo.1320099

Sace, C. F. and Fitzsimmons, K. M. (2013). Vegetable production in a recirculating aquaponic system using Nile tilapia (Oreochromis niloticus) with and without freshwater prawn (Macrobrachium rosenbergii). Academia Journal of Agricultural Research. 1. 236-250.

Schmautz, Z., Loeu, F., Liebisch, F., Graber, A., Mathis, A., Bulc, T. G. and Junge, R. (2016). Tomato productivity and quality in aquaponics: Comparison of three hydroponic methods. Water (Switzerland), 8(11).

Schnelle, M. and Rebek, E. (2013). IPM in the Greenhouse Series: Integrated Pest Management in Commercial Greenhouses: An Overview of Principles and Practices. Oklahoma State University Extension . Id: HLA-6710

Shete, A. P., Verma, A. K., Tandel, R. S., Prakash, C., Tiwari, V. K. and Hussain, T. (2013a). Optimization of water circulation period for the culture of goldfish with spinach in aquaponic system. Journal of Agricultural Science, 5(4), 26.

Shete, A. P., Verma, A. K., Kohli, M. P. S., Ajit, D. and Ritesh, T. (2013b). Optimum stocking density for growth of goldfish, Carassius auratus (Linnaeus, 1758), in an aquaponic system. Israeli Journal of Aquaculture

Bamidgeh, 65.

Sidoruk, M. and Cymes, I. (2018). Effect of water management technology used in trout culture on water quality in fish ponds. Water (Switzerland), 10(9), 1264.

Smith, L. (2019). Aquaculture development in less developed countries: social, economic, and political problems. Routledge.

Stadler, M. M., Baganz, D., Vermeulen, T. and Keesman, K. J. (2017). Circular economy and economic viability of aquaponic systems: Comparing urban, rural and peri-urban scenarios under Dutch conditions. In Proceedings of ICESC2015: Hydroponics and Aquaponics at the Gold Coast. Acta Horticulturae 1176: 101-114.

Summerfelt, S.T., Zühlke, A., Kolarevic, J., Reiten, B. K. M., Selset, R., Gutierrez, X. and Terjesen, B.F. (2015). Effects of alkalinity on ammonia removal, carbon dioxide stripping, and system pH in semi-commercial scale water recirculating aquaculture systems operated with moving bed bioreactors. Aquacultural Engineering, 65, pp.46-54.

Timmons, M. B. and Ebeling, J. M. (2010). Recirculating aquaculture (Vol. 126). Ithaca, USA: Cayuga Aqua Ventures.

Timmons, M. B., Ebeling, J. M., Wheaton, F. W., Summerfelt, S. T. and Vinci, B. J. (2002). Recirculating Aquaculture Systems, 2nd (2015). Economics of small‐scale commercial aquaponics in Hawai ‘i. Journal of the world aquaculture society, 46(1), 20-32.

Tran, N., Chu, L., Chan, C.Y., Genschick, S., Phillips, M. J. and Kefi, A. S. (2019). Fish supply and demand for food security in Sub Saharan Africa: An analysis of the Zambian fish sector. Marine Policy. 99: 343-350.

Tyson, R. V., Simonne, E. H., Treadwell, D. D., White, J. M. and Simonne, A. (2008). Reconciling pH for ammonia biofiltration and cucumber yield in a recirculating aquaponic system with perlite biofilters. HortScience, 43(3), 719-724.

Tyson, R. V., Treadwell, D. D. and Simonne, E. H. (2011). Opportunities and challenges to sustainability in aquaponic systems. HortTechnology, 21(1), 6-13.

van Gorcum, B., Goddek, S. and Keesman, K. J. (2019). Gaining market insights for aquaponically produced vegetables in Kenya. Aquaculture International, 27(5), 1231-1237.

Van Rijn, J. (1996). The potential for integrated biological treatment systems in recirculating

fish culture—a review. Aquaculture, 139(3- 4), 181-201.

Villarroel, M., Alvariño, J. M. R. and Duran, J. M. (2011). Aquaponics: integrating fish feeding rates and ion waste production for strawberry hydroponics. Spanish Journal of Agricultural Research.

Wu, F., Ghamkhar, R., Ashton, W. and Hicks, A. L. (2019). Sustainable Seafood and Vegetable Production: Aquaponics as a Potential Opportunity in Urban Areas. Integrated Environmental Assessment and Management. 15 (6): 832–843.

Yep, B. and Zheng, Y. (2019). Aquaponic trends and challenges–A review. Journal of Cleaner Production, 228, 1586-1599.

Yogev, U., Barnes, A. and Gross, A. (2016). Nutrients and energy balance analysis for a conceptual model of a three loops off grid, aquaponics. Water, 8(12), p.589.

Yogev, U., Sowers, K. R., Mozes, N. and Gross, A. (2017). Nitrogen and carbon balance in a novel near-zero water exchange saline recirculating aquaculture system. Aquaculture, 467, 118–126.

Downloads

Published

2021-08-27

How to Cite

Ani, J. S., Masese, . F. O., Manyala, J. O. ., & Fitzsimmons, K. (2021). Assessment of the Performance of Aquaponics and its Uptake for Integrated Fish and Plant Farming in Sub-Saharan Africa. Africa Environmental Review Journal, 4(2), Pg 123–138. https://doi.org/10.2200/aerj.v4i2.134