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ABSTRACT 

 
Burgers’ equation appears as a model in turbulence and gas dynamics. We construct hybrid finite 

difference schemes from ordinary finite difference methods for solving this equation. Among the 

hybrid methods developed are the Crank-Nicholson-Du Fort and Frankel and Crank-Nicholson- Lax-

Friendrich’s and Du Fort and Frankel. We determine that the Du Fort  and  Frankel  discretization have 

an improvement effect on other finite difference schemes whereas the Lax- Friedrich’s method reduces 

their efficacy. We note that the Du Fort and Frankel method increases  the number of grid points 

involved by one. The increase of the grid points is responsible for the improved accuracy of the Crank-

Nicholson and the Hybrid Crank-Nicholson-Lax-Friedrich’s, methods. The hybrid Crank-Nicholson-

Lax-Friedrich’s,-Du Fort and Frankel scheme is the most accurate. 
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Introduction 
u(0, x) = u0 (x) 

The Burgers equation 

ut + uux = uxx (0  x  1)  (t  0) 

u(x,0) = u0 (x) 
………………………….……… (1.1) 

can be solved by using ordinary finite difference 

methods (Ames[1], Jain[4], Mitchel & 

Griffiths[5]). The ordinary finite difference 

methods in the literature are  mainly  two: forward 

time central space (FTCS), and the Crank-

Nicholson methods. 

Let the numerical solution of the equation (1.1) 

ux (0, t) = p(x) 

ux (1, t) = q(x) 

 

 
For Eqns. (1.2) and (1.3) the initial  and  boundary 

conditions must be taken into consideration. Finite 

difference  approximation  of the boundary 

conditions can also be made. 

The scheme (1.2) is an explicit method while the 

scheme (1.3) is an implicit method. The methods 

stated above rarely make use of the boundary 

at the point (x, t) = (mh, nk) be denoted by conditions. 

U
m,n . At the point (x, t + 1) = (mh,(n + 1)k ) Other similar methods have been cited in the 

the FTCS approximation is given by literature. Drazin [3] discusses the scattering 

U = f (mh, nk,U m,n 
, 1  

x
U 

 
  1       2 

m,n   h2 x m,n 

method for solving this equation. 

The heat equation 

………………………….. (1.2) 

 

The Crank-Nicholson method is given by 
ut = uxx 

 
………………… (1.4) 

U = f (mh, nk,U , 1  U ,  1   2 (U + U )) 

m,n+1 m,n h x m,n 2h2 x m,n m,n+1 

…………………………………… (1.3) 

has been solved by forward time central space 

(FTCS),backward time central space (BTCS), 

Leap-frog, Du Fort and Frankel, and the Lax- 

Fredrich’s methods [1,2,4,5,6,7,8]. 

In our paper we seek to blend the finite differences 

used in solving the heat equation and use them (the 

blended schemes) to solve the Burgers’ equation 

(1.1). The blended  methods are called hybrid 

methods. The hybrid methods we shall develop are 

the Crank-Nicholson –Lax- 

 
Numerical Schematics: Construction of 

hybrid methods 

Pure Crank-Nicholson 

 
It is necessary that first we develop the pure Crank-

Nicholson method for solving equation (1.1) to be 

used for comparison. We shall then determine the 

effects of blending it with the  other methods. 

Fredrich’s, Crank-Nicholson-Du Fort and 

Frankel and Crank-Nicholson- Lax-Fredrich’s – 
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We want to discretize equation (2.1.2) basing on   u 2 
 

     

the Crank-Nicholson method. We have  
x 


 2 

  
2  x 

(G)m,n + 
x 

(G)m,n+1 

 

u 
 

U
m,n+1 

− U
m,n 

t k 
= 

t
U

m,n 

…………………………………………………… (2.1.5) 
 

By Taylor’s expansion we have 

………………………………………………... (2.1.3) 
 

where t is the forward difference operator 
x 

(G)
m,n+1 

= 

with respect to t .      2 

x 
(G) m,n + k 

t 
 

x 
(G)m,n  + O(k ) 

   u 2   
The discretization of 

t 
(
 

) using the Crank- 
2 

……………………………… (2.1.6) 

Nicholson method is given by Now 

2  2 2  
   

 
 

(G) 
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(G) 
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
   U  

+ 
   U    


 t 

 
x 

 
x 
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x 
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U t 


 x 


 t 


 

  x 2   2 x 2   x 2          

    m,n  m,n+1  …………………………………… (2.1.7) 

 

………………………………………...(2.1.4) and so 

Let 
U 

= G 
2 

 

Equation (2.1.4) then becomes 
 

    
  

t 
 

x 
(G) 

 
 

 

 (U 
x 

 

 

m,n  tU 

 

 

m,n 

 

 
…………………………………….. (2.1.8) 

= 
U

m+1,n 
(U

m+1,n+1 
− U

m+1,n 
) − U

m−1,n 
(U

m−1,n+1 
− U

m−1,n 
) 

2kh 
 

The discretized form of equation (2.1.6) is now 

 

 G   
x 

 
2h 

  m,n+1 

+ k 
U

m+1,n 
(U

m +1,n+1 
− U

m+1,n 
) − U

m−1,n 
(U

m−1,n+1 
− U

m−1,n 
)  

……………………………..……. (2.1.9) 

 
2kh 


 

) 
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Equation (2.1.4) then becomes 

   (U 2 ) − (U 
2 )   


2 2 m+1,n 2 m−1,n   

  u 2   
  2h   

 
x 

   
 

 
 

U (U 
 

− U ) − U (U 

 
(2.1.10) given by 

− U ) 


 

+ k  m+1,n m +1,n+1 m+1,n m−1,n m−1,n+1 m−1,n  

  2kh  

 

 

   (U 
2 ) − (U 

2 )   


2 2 m+1,n 2 m−1,n   

u  
   2h   

t 
+ uux  tUm,n + 

2 
  

U (U 
 

− U ) − U (U 
 

− U ) 
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+ k 
  m+1,n m+1,n+1 m+1,n m−1,n m−1,n+1 m−1,n 


 

  2kh  

 

= tU 

 

 
 

m,n 

 

+   (U 

 

m+1,n
U 

 

 
m+1,n+1 

 

−U
m−1,n

U 

 

m−1,n+1 
) 

 
………………… (2.1.11) 

 

For the term uxx the Crank-Nicholson method is given by  
2 (Um,n 

+ U
m,n+1 

) . 

 

Thus the pure Crank-Nicholson scheme for solving (1.1) is 
 

tU 
 
 

m,n +   (U 
m+1,n

U 

 

m+1,n+1 − U
m−1,n

U 

 

m−1,n+1 
) =    (U 

2h 

 
 

m,n + U
m,n+1 

) ………………………….. (2.1.12) 

 

Hybrid Crank-Nicholson- Lax-Fredrich’s The terms Um,n in tUm,n 

 
and 

Scheme 
   (U 
2h 

 

m,n 
+ U

m,n+1 ) in equation (2.1.12) are 

The term Um,n in tUm,n is replaced by replaced by 

1 (Um−1,n + Um+1,n ) in equation (2.1.12) to 
 

1 (U 

 

 
m,n−1 

+ U
m,n+1 

) 
 
to obtain this hybrid 

obtain hybrid Crank-Nicholson- Lax-Fredrich’s 

Scheme Hybrid Crank-Nicholson-Du Fort and Frankel 

Scheme 

2 
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2 

Crank-Nicholson-Du Fort and 

Frankel Scheme. 

Hybrid Crank-Nicholson-Lax-

Friedrich’s-Du Fort and Frankel 

Scheme 

 

The term Um,n−1 in the left hand side of the 

scheme Hybrid Crank-Nicholson-Du Fort and 

Frankel mentioned in section 2.4 above is 

replaced by 1 (Um−1,n−1 + Um+1,n+1 ) to 

obtain the hybrid Crank-Nicholson-Lax- 

Friedrich’s-Du Fort and Frankel Scheme. 

Results from the Numerical Experiments 

 
We note that Lax-Friedrich’s and Du Fort and 

Frankel differencing modifies the pure Crank- 

Nicholson scheme. In particular the Du Fort and 

Frankel differencing increase the number of grid 

points involved by one. All the schemes 

developed are based on  Crank-Nicholson 

method and therefore all are unconditionally 

stable. 

Wood [9], gives the exact solution of Burgers’ 

equation (1.1) as 

 
2e− 

2
t sin x 

Equations (3.2) and (3.3) gives the initial and 

boundary values respectively. We use them in 

generating the numerical solution of the problem 

(1.1). We generate the solutions of the methods 

developed for following 

data: h = 0.1, k = 0.001, d = 2, = 0.0001and 

 = 1. 

 
The choice of the above parameters is to ensure 

that that accuracy is improved and that 

the condition given in Eqn. (3.1) is satisfied. 

Figures 1-5 display the results obtained from the 

constructed schemes. The notations used in the 

figures are given in the appendix. 

We present the graphical results of the Burgers’ 

equation at t = 0.005 . The graphical results 

from the various hybrid methods and the exact 

u(x, t) = 

 
and   so 

, 
d + e− 

2
t cosx 

d  1 …..(3.1) solution have been plotted together for 

comparison. 

 

u(x,0) = 
2 sin x 

,
 

d + cosx 

 

d  1,................ (3.2) 

 

 

u(0, t) = u(1, t) = 0 ................................ (3.
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Figure 1: Solutions of the Burgers ‘equation from ordinary methods 
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Figure 2: Exact solutions of the Burgers’ equation from ordinary methods t=0.005 

 

 

 
We give the two figures above because it is not 

clear from figure 1 where the exact solution 

curve is. Actually they coincide with that of CN- 

LF-DF scheme. 

From figures 1(and 2) we realize that Du Fort  and 

Frankel differencing improves both the efficacy of 

the pure Crank-Nicholson and the Hybrid Crank-

Nicholson-Lax Friedrichs’ methods whereas the 

Lax-Friedrich’s discretization does otherwise. 

This is because 

 
0 

the Du Fort and Frankel discretization utilizes one 

extra point below the point of reference,  Um,n = 

u(mh, nk). The Crank-Nicholson-Lax 

Friedrich’s- Du Fort and Frankel scheme  provides 

the most accurate results as can be seen in the 

figures because of the same reason 

mentioned above. 

The absolute errors from the hybrid schemes at 

t=0.005 are as given in the table 1 below. 
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Table 1: Absolute errors from the hybrid methods at t=0.005 × 10-3 

 
x CN CN-DF CN-LF CN-LF-DF 

0 0 0 0 0 

0.1 0.00053331197580 0.00065156552310 
0.01050525609140 

0.03243206696000 0 

0.2 0.00360376977550 0.00383917119410 
0.08104481096600 

0.17652670848340 
0 

0.3 0.01291984510310 0.01326883742900 0.33507132056870 0 

 

0.4 
 

0.03501233165030 
 

0.03545318492110 
0.54093331616550 

0.71233756528560 

 

0 

0.5 0.08068544986110 0.08121093076600 
0.71094251416810 

0.44779262051820 
0 

0.6 0.16332074460430 0.16389031622390 
0 

0 

0.7 0.28207585348740 0.28262100928050  0 

0.8 0.37571037462310 0.37614334750010 
 

0 

0.9 0.30055059783460 0.30080063107570 
 

0 

1.0 0 0 
 

0 

 

 

From Table 1 the errors involved are actually small 

and without loss of generality this should taken as 

the case for values of t. 

All the developed hybrid schemes are actually 

series and the higher the number terms involved 

the greater is the accuracy. 

Since all the hybrid methods are  implicit  they 

are actually stable. 

We now give 3-D solutions obtained from the 

constructed hybrid methods. 
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Figure 3: CN-DF 3-D solution for Burgers equation from ordinary methods 

 

x 10
-4

 

 
4 

 

3 

 

2 

 

1 

 

0 

15 
 

10 

 
5 

 

time  t 
0 0 

 
 
 

15 

10 

5 

 
distance x 

 
 
 
 

 
Figure 4:CN-LF 3-D solution for Burgers equation from ordinary methods 
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Figure 5 :CN-LF-DF 3-D solution for Burgers equation from ordinary methods 
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The 3-D solutions are all similar in shape but the 

one obtained using CN-LF-DF 

(Fig. 5) provides the best picture of the distribution 

of fluid particles. 

CONCLUSION 

The Crank-Nicholson-Lax Friedrich’s- Du Fort 

and Frankel’s scheme provides  the  most accurate 

results. The Du-Fort and Frankel  method 

increases the efficacy of both the pure Crank-

Nicholson and the hybrid Crank- Nicholson-Lax-

Friedrich’s methods. 

The Du Fort and Frankel method utilizes  one grid 

point at the lower level of the grid point in 

question. The involvement of the extra  grid  point 

at lower level (to the point of reference) is 

responsible for the improved results of the CN- DF 

and CN-DF-LF methods. 

The methods constructed are all based on the 

Crank-Nicholson method and therefore are all 

unconditionally stable. 
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APPENDIX 

The following notations are used throughout the 

presentations; 

CN means pure Crank-Nicholson’s method, 

CN-LF means Crank-Nicholson- Lax- 

Friedrich’s method, 

CN-DF means Crank-Nicholson-Du Fort – 

Frankel’s method and 

CN-LF-DF means Crank-Nicholson- Lax- 

Friedrich-Du Fort-Frankel’s method, 

3-D means three- dimensional. 


