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Abstract 
Summary measures of the performance of a diagnostic kit require all study subjects to be verified  via 

a gold standard procedure. However the subjection of all subjects to such a procedure may not  be 

possible due to associated risks, invasiveness and cost. In normal practice only  those  who register at 

least one positive test result undergo the confirmatory procedure. Over the recent past different models 

have been proposed to estimate the false negative fraction (FNF) in this partial verification scenario 

using Maximum Likelihood and Bayesian techniques. In the Bayesian framework different  priors 

have been proposed for the parameter of a Bernoulli  distribution. In   this work we compared the 

estimates of FNF obtained when three different non-informative priors are assigned to the probability 

of an individual testing positive and further did some validation by comparing the predictions with the 

actual observed data. Results show that the  estimates  of  the FNF under three selected non-informative 

priors are largely similar. We conclude that though different forms of non-informative priors for the 

parameter of the Bernoulli distribution are in existence they do lead to similar results. The choice of 

the non-informative prior to use does not really matter. However, it was found that the predictions 

based on each of the three selected non- informative priors did not fit the observed data quite well. 
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1. Introduction 

Accurate classification of individuals as either 

diseased or non-diseased is part of the critical 

routine processs of providing health care. 

Binary classification kits are  commonly used 

in such excercises. The kit classifies an 

individual as either being positive or negative. 

Two important summary measures of the 

performance of a binary classifier are 

sensitivity and specificity. Sensitivity is the 

proportion of true-diseased correctly 

identified by the test while specificity is the 

proportion of the non-cases who are are 

correctly classified as negatives by the test. 

The  performance  of the binary kit can also be 

expressed in terms of its error rates. These are 

simply 1- sensitivity, also refered to as the 

false negative fraction (FNF) and 1-

specificity, which is also called the false 

positive  fraction (FPF) ( Lloyd and Frommer, 

2004). All the above characteristics of a 

binary classifier can be easily obtained 

provided all the study subjects undergo a 

confirmatory gold standard procedure. In 

certain cases not all the subjects tested using 

the binary kit go to through the confirmatory 

procedure. Such factors as cost, associated 

risks and invasiveness of the gold standard 

procedure may render such a process to  be 

inapplicable. It is also possible that only those 

who have been identified as positives by the 

binary classifier are subjected to the 

confirmatory procedure. Because of this 

partial verification the summary measures of 

the testing kit cannot be obtained directly. 

The data used in this work is taken from Lloyd 

and Frommer (2004) where 38000 subjects 

volunteered to be screened  for bowel cancer. 

In the primary phase each study subject was 

required to test for blood  in stool on 6 

consecutive days using a self- administered 

kit. About 3000 subjects tested 

positive at least on one occasion. Those who 

had at least one positive result had their true 

disease status verified using physical 

examination, sigmoidoscopy and 

colonoscopy. Of all the subjects with a 

minimum of one positive test 196 were 

confirmed to be true cases. Individuals who 

tested negative in all the 6 days were not 

verified. In the secondary phase further 

screening was conducted on 122 of  the initial 

196 verified cases. Each of these 122 

individuals volunteered to take further 6  tests 

using the same self-administered kit as in the 

primary phase. These tests were conducted 

about one week after the primary phase. The 

tabulation of the number of study subjects 

based on the positive counts in the primary 

and the secondary phases is given in Table 1. 

The column marked “missed“are those who 

did not volunteer to be tested in the second 

part of the study. Since there is partial 

verification direct estimation of the summary 

measures of the test kit is not possible. 
 

Lloyd and Frommer (2004) use maximum 

likelihood approch while Held and Ranyimbo 

(2004) propose Bayesian techniques to 

addressing the estimation problem under 

partial verification scenario. The Bayesian 

approach has the advantage that use is made 

of the prior information regarding the 

parameter and in addition the uncertainty 

about the parameter can be captured by 

specification of the prior distribution. 

Numerous priors derived under different 

paradigms are in existence. The selection of 

the suitable prior is a critical exercise. The 

first objective of this work is  to compare the 

estimates of the FNF under the partial 

verification setup when we use three 

differeent non-informative priors. The second 

objective is to validate the models.

obtained under the different non-informative priors by making use of the out-of-sample predictions. 

The paper is organized as follows: In  Section 2 we 
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briefly discuss our method which entails 

Bayesian inference, derivation 

one which has virtually no information 

regarding the unknown parameter. Various 

approaches have been proposed for the 

derivation of non-informative priors. The 

commonly used approach is that due to 

Jeffreys (1961) which involves choosing th

of the beta-binomial model and validation. We 

give the obtained results in Section 3 and our concluding remarks in Section 4.  

non-informative prior 

unknown parameter  as 
1 

 () for the 

 
2. Materials and Methods 

2.1 Bayesian Infe 

2.2 rence 
The Bayesian approach consists of two 

I () = −E  

  
2
 

 ...............(3) 

 

parts: specification of the likelihood 

f ( y /) and choice of a suitable prior  () 

  

where y and  are the vector of 

  
observations and the unknown parameter 
respectively. If the functional form of the prior is 

known then using Bayes’  theorem the posterior 

distibution of  is given by 
f ( y /) () 

is the expected Fisher information function. Other methods 

which have been put forward in deriving non-informative 

priors include Novick   and   Hall   (1965),   Zellner  (1971, 

1977), Akaike (1978) and Bernado (1979) among 

others. Berger (1985) has argued that the approach 

by Bernado does better even where the others fail. In 

this work we look at the        following        three        

priors      for 

f ( / y) = 

  

  

 f ( y /) ()d 

........... (1) parameter  (0,1) : 

Prior I:  ()   
− 12 (1 − )

− 12 

The denominator in expression (1) above is called   

the   marginal   density   of      y . The  
evaluation of the integral is usually difficult if not 

impossible hence need for approximations. With the 

fast development of   Monte   Carlo   computing   

methods  the 

Prior II:  ()  1 

Prior III:  ()   
−1 

(1 − )−1 

All the prior listed above belong to the beta( ,  ) 

distribution with the density as given below: 

integrals of the above type can now be accurately 

estimated and hence advanced 
f ( | ,) = 

 

−1
(1−)

 

−1
 

B(,) 

  0,  0,0  1 .....(4) 

Bayesian data analysis can be conducted (Carlin and Louis, 

1996). Since the denominator is not a function of  we can 
summarize the posterior as 

 

Posterior  Likelihood  Pr ior 

In certain conditional analysis there may be no or very little 

information regarding the unknown parameters. In order to 

employ the Bayesian techniques in such a situation one 

may choose to work with non-informative priors. Berger 

(1985) has given an explanation of a non-informarive prior to be 
Where B( ,  ) is the complete beta 

function. 

 

2.3 Beta-Binomial model 

The beta-binomial model that is used to model the 

bowel cancer study described above has been 

discussed in Held and Ranyimbo (2004). First 

we consider the 196 individuals who tested
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i 

i 

i 

i  v 

  1 +  

 
Let X ( j) = 1 if the ith subject tests positive 

 
f (vi /,,Vi 0) = f (vi /,) 

 
,vi =1,2,3,4,5,6….(7) 

on the jth test. 
 

1− f (0/,) 

X ( j ) = 0 if the ith subject tests negative on Also if the functional form of the beta- 

the jth test. 

And suppose that the probability that an 

individual tests positive is  then clearly 

binomial distribution is known then the false 
negative fraction (FNF) is simpby given by 

FNF = f (0 /  ,  ) . It can be shown that the 

( j ) 

i 
follows a Bernoulli distribution with likelihood for the data from the primary 

phase is 

parameter  . It then follows that the count  

of the positives tests for the ith individual is 

 

 

[ f (vi 

 
/  ,  )]m j

 

given by Vi 
6 

k =1 
X (k) . The distribution of L( ,  ) = l =1 

[1 − f (0 /  ,  )]196 …………(8) 

Vi    is binomial with parameters (6,   ). If   

is assumed to follow the Beta( ,  ) 

distribution  then  the marginal  density of Vi 

is obtainable from the following integral: 

where   m j     is  the  count  of  study  subjects 

with j positive tests. Instead of working with 

the parameters ( ,  ) we adopt the 
 

1 6 
6−v 

−1(1−)−1 

  
 

…. (5) reparameterization 
 = 

 +  and 

f (v /,) =   (1−) 
0  i  

B(,) 
d

  =
 1   

where is the prior mean, 

Evaluating the integral in (5) leads to the  +  + 1 

following beta-binomial distribution 
6B(+vi , +6−vi ) 

 
 

 ..(6)  +  is an indicator of the prior precision 

f (vi  /,) =  
vi  B(,) 

,vi =0,1,2,3,4,5,6 and is the measure of correlation between 
an    individual’s    test    results.    We assign 

The obtained beta-binomial is such that independent priors (using Prior I, II and III) 

E
 Vi   

= 
    

 
 

and to (,  ) . Using Bayes’ theorem the 
  
 6   +  posterior distribution of (,  ) given Vi 

Var
 Vi  

= 
            5        

 6  6( +  )2   +  + 1 

The last bracket in the expression for variance 

is known as the variance inflation  or the extra-

binomial variation (Carlin and Louis, 1996). Because of 

this term the beta- binomial model is commonly used to 

model overdispersed data. Since in the bowel  cancer 

data the individuals who tested negative in all the 6 tests 

6 

vi i 

X 

=  



 

i 

i i 

i 

(Vi = 0 ) were  never verified it follows that 

the distribution of the Vi is the zero-truncated 

beta-binomial distribution as derived in Lloyd  

and Frommer (2004), and given as 

(i=1,...,196) can be obtained. However this 

posterior density is not in a well-known closed 

form hence the need to use Markov Chain Monte 

Carlo methods.We used a Metropolis Hastings 

algorithm where 

and are updated separately. From the posterior  

samples  of and we can 

obtain the posterior estimates of FNF. 

2.4 Model Validation 

Since we have three beta-binomial models 

derived using three different priors it is of 

interest to determine which model would be 

suitable for the bowel cancer data. To make 

this assessment we rely on the out-of-sample 

prediction approach assuming the secondary data is 

representative of the primary results.the estimates are 

quite similar. However the 95% credible interval for the 

model under 

Since Vi follows a beta-binomial Prior III is relatively larger. 

distribution, we can use Bayes’ theorem to 

obtain the posterior distribution of   given  vi 

.Thus 
 + v  −1  + 5 − v

 ( / v  )       i         (1 −  )         i
 (9) 

which   is   another   beta   distribution.   If  vs 

denotes the count of positives for the ith 

individual who volunteered to participate in 

the secondary phase after registering vi 

positives     in     the     primary    phase  then 

f (v s / v , ,  ) can be shown to have a beta- 

Tables 4, 5 and 6 report the predicted counts 

in the secondary phase given the particular 

primary history under the three different 

models. Generally the predictions based on all 

the three models are again similar though the 

predicted values do not appear to match the 

observed counts. 

 

4. Discussion and Conclusions 

Prior ellicitation is usually a  difficult exercise 

that requires experience. The choice 

binomial distribution 
6B(+v +vs,+12−v −vs) 

of  non-informative prior  lessens  the burden 
of   determining   which   prior   to   use.   By 

f(vs/v,,)=  i   i i i ,vs =0,1,2,3,4,5,6.(10) i    i vs B(+v,+6−v) i choosing to a prior with little or no 

 i  i i 

Using the above probablity we get the 

predicted counts of individuals having a given 

number of positives in the secondary phase 

given their history of primary counts. 

3. Results 

Using the primary data alone we applied the 

MCMC approach to the bowel cancer data 

assuming each of the three priors. We ran three 

separate MCMC algorithms with 10,000 iterations each. 

Our burn-in was 500 runs. We approximated Prior III 

with Beta(0.0001,0.0001) distribution as an 

approximation to avoid computation  collapse as the 

MCMC algorithm is run. Table 2 shows the median  

posterior estimates of the FNF obtained using  the three 

specified priors. 

 

The estimates are very close and we can say that the 
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FNF is about 27%. The  95% credible intervals 

are largely similar except that under the model 

with Prior III this interval is wider. This is 

likely due to the approximation of Prior III. In 

Table 3 we report the posterior median 

estimate of the number of individuals who 

could have been misclassified as negatives by 

the test. Again information about the unknown 

parameter it means that the likelihood will be 

dominant  in determination of the posterior 

distribution (Carlin and Louis, 1996). The 

three priors that are considered in this paper 

have different functional form since they are 

derived under different conditions. Though the 

non-informative priors for the parameter of the 

Bernoulli distribution considered in this paper 

are derived under different assumptions, the 

final posterior estimates of the false negative 

fraction under the beta- binomial models are 

largely similar. It therefore means that when 

one is not certain which prior to use, in a 

scenario where there in no adequate 

information, any non- informative prior would 

do. The results also indicate that the  out-of-

sample  predictions of the secondary data are 

not well fitting. One probable reason as to why 

the  models do not appear to give good 

predictions  is that the considered priors are 

not invariant under reparameterization. 

Secondly the tests from each subject have been 

assumed to be independent. This may not be 

the case hence the need to incorporate the 

dependency  in the models. An alternative 

approach would be to consider the study 

subjects to be coming from a mixture ot two 

populations, diseased and non-diseased, with 

two  different prevalence parameters 
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Table 1. Tabulation of the count of subjects on the basis of the number of positive tests in the 

primary as well as the secondary phase. 
 

Secondary 

Primary 0 1 2 3 4 5 6 missed total 

1 10 3 3 2 2 1 2 14 37 

2 3 2 2 1 4 1 1 8 22 

3 4 1 5 3 4 1 2 5 25 

4 1 1 0 3 4 1 4 15 29 

5 3 1 1 4 4 3 6 12 34 

6 1 0 1 3 3 5 16 20 49 

Total 22 8 12 16 21 12 31 74 196 

Table 2. Posterior estimates of the false negative fraction (FNF) under different priors. 
 FNF estimate 95% Credible Interval 

Prior I 0.269 [0.122, 0.717] 

Prior II 0.265 [0.123, 0.626] 

Prior III 0.272 [0.120, 0.944] 

 
Table 3. Posterior estimate of the missed cases under different priors. 

 Missed cases 95% Credible Interval 

Prior I 73 [27, 298] 

Prior II 71 [27, 329] 

Prior III 74 [26, 3334] 

 

Table 4 Observed and predicted number of individuals with counts of secondary positives 

conditional on primary positives. Predictions based on beta-binomial model with Prior I. 
 

Secondary positives 
Primary  

positives  0 1 2 3 4 5 6 

 
1 

 
Observed 

 
10.00 

 
3.00 

 
3.00 

 
2.00 

 
2.00 

 
1.00 

 
2.00 

 predicted 8.18 6.72 4.32 2.32 1.04 0.34 0.07 

2 Observed 3.00 2.00 2.00 1.00 4.00 1.00 1.00 
 predicted 2.14 3.30 3.33 2.62 1.64 0.76 0.21 

3 Observed 4.00 1.00 5.00 3.00 4.00 1.00 4.00 
 predicted 1.14 2.75 4.06 4.57 3.94 2.59 1.03 

4 Observed 1.00 1.00 0.00 3.00 4.00 1.00 4.00 
 predicted 0.23 0.84 1.75 2.71 3.33 3.18 1.97 

5 Observed 3.00 1.00 1.00 4.00 4.00 3.00 6.00 
 predicted 0.08 0.38 1.10 2.42 4.32 6.43 7.28 

6 Observed 1.00 0.00 1.00 3.00 3.00 5.00 16.00 
 predicted. 0.01 0.06 0.24 0.75 2.09 5.69 20.16 

Total Observed 22.00 8.00 12.00 16.00 21.00 12.00 33.00 
 predicted 11.78 14.05 14.80 15.39 16.36 18.99 30.72 
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Table 5 Observed and predicted number of individuals with counts of secondary positives 

conditional on primary positives. Predictions based on beta-binomial model with Prior II. 
 

Secondary positives 

Primary         

positives  0 1 2 3 4 5 6 

1 Observed 10.00 3.00 3.00 2.00 2.00 1.00 2.00 
 predicted 8.15 6.73 4.33 2.33 1.03 0.34 0.07 

2 Observed 3.00 2.00 2.00 1.00 4.00 1.00 1.00 
 predicted 2.14 3.30 3.33 2.62 1.64 0.76 0.21 

3 Observed 4.00 1.00 5.00 3.00 4.00 1.00 4.00 
 predicted 1.13 2.75 4.06 4.50 3.94 2.58 1.03 

4 Observed 1.00 1.00 0.00 3.00 4.00 1.00 4.00 
 predicted 0.24 0.84 1.74 2.71 3.33 3.18 1.97 

5 Observed 3.00 1.00 1.00 4.00 4.00 3.00 6.00 
 predicted 0.08 0.38 1.10 2.42 4.32 6.43 7.28 

6 Observed 1.00 0.00 1.00 3.00 3.00 5.00 16.00 
 predicted. 0.01 0.06 0.24 0.75 2.10 5.71 20.13 

total Observed 22.00 8.00 12.00 16.00 21.00 12.00 33.00 
 predicted 11.75 14.06 14.80 15.33 16.36 19.00 30.69 

 

Table 6 Observed and predicted number of individuals with counts of secondary positives 

conditional on primary positives. Predictions based on beta-binomial model with Prior III. 
 

Secondary positives 

Primary  

positives  0 1 2 3 4 5 6 

1 Observed 10.00 3.00 3.00 2.00 2.00 1.00 2.00 
 predicted 8.27 6.68 4.29 2.32 1.03 0.35 0.07 

2 Observed 3.00 2.00 2.00 1.00 4.00 1.00 1.00 
 predicted 2.17 3.30 3.32 2.61 1.63 0.76 0.21 

3 Observed 4.00 1.00 5.00 3.00 4.00 1.00 4.00 
 predicted 1.15 2.76 4.06 4.50 3.93 2.58 1.03 

4 Observed 1.00 1.00 0.00 3.00 4.00 1.00 4.00 
 predicted 0.24 0.84 1.75 2.71 3.33 3.18 1.97 

5 Observed 3.00 1.00 1.00 4.00 4.00 3.00 6.00 
 predicted 0.08 0.38 1.11 2.42 4.32 6.43 7.27 

6 Observed 1.00 0.00 1.00 3.00 3.00 5.00 16.00 
 predicted. 0.01 0.06 0.24 0.76 2.10 5.66 20.17 

total Observed 22.00 8.00 12.00 16.00 21.00 12.00 33.00 
 predicted 11.92 14.02 14.77 15.35 16.34 18.96 29.72 


