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Abstract 

 

Recently ‘designer’ nuclei with large neutron excess, such as 11Li , have been produced to 

understand the role played by excess neutrons in studying the properties of new isotopes and 

to develop new nuclear theory, and to understand how such isotopes can be used to develop 

new fission and fusion processes for the development of nuclear energy.  Using  the idea of 

a nuclear core composed of neutron-proton pairs (np-pairs) surrounded by unpaired neutrons 

and the Bogoliubov technique, we have calculated the binding energy, binding fraction, 

specific heat, entropy, and transition temperature of such nuclei, and particularly the isotopes 

for which the ratio of neutron to proton number is approximately 

1.554 or more since this is the ratio for fissile materials. 
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Introduction 
 

During the last decade, chemists and physicists 

have tried a fabrication process  at the scale of 

atomic nuclei. It is a new method of producing 

in large quantities, the so called “designer” 

atomic nuclei, which are new rare isotopes with 

large excess numbers  of neutrons or protons, 

and with unusual decay modes [Geesaman et al 

2006]. There are various reasons why there is a 

demand for unusual type of new isotopes. New 

isotopes may hold key to the understanding of 

the significant properties of large finite  nuclei  

with large neutron excess such as the pairing 

phenomena, constitution of the core region of 

the nucleus, the size of the nucleus, decay 

phenomena from the nucleus, the role of neutron 

excess in studying the creation of nuclear energy 

and nuclear fission.  There could be a host of 

other properties and phenomena that may be 

studied in future depending upon what kind of 

isotopes we are 

Quantum mechanically, the wave function of the 

neutrons can extend far beyond the normal range 

of the nucleus. The existence of nuclei with 

abnormal neutron excess can allow researchers 

to study the inter-actions of neutrons with 

protons in the nucleus, and also 

to study the charge radius of 11Li , and such a 

study can provide  key information  to develop a 

new nuclear theory [Sanchez 2006]. 

The discovery of new isotopes (nuclei) with very 

typical characteristics has shown that the 

quantum magic numbers in nuclei are not 

generally the same, and this is centrally  to what 

is observed for electrons in atomic physics. For 

instance, a nucleus with 28 neutrons (28 is a 

magic number for nuclei) is sometimes but not 

always magic  [Bastin 2007]. On the other hand, 

a change in the magic numbers in rare isotopes 

is not always found.  A  recent  mass  

measurement  of  rare 

isotope  132Sn ,  with a proton number  Z  = 50 

able to produce. and the neutron number N = 82 , found it to 

The ability to produce and study single atoms 

depends on the scientific and technological 

capability to  produce  super  heavy isotopes of 

light nuclei. For instance a superheavy lithium 

isotope    (11 Li)  may   have   large   ratio   of 

neutrons such that the binding energy of the 

neutrons in the nucleus may be decreased. The 

size of  such  a nucleus may be  very large.  For 

have the largest measured shell gap, which is 

energy difference between the field shell  model 

orbit and the next unfilled one [Dworschak 

2008]. 

It is well known that the atomic nuclei fuel the 

fission and fusion processes that  are responsible 

for the creation of energy on the Earth and the 

Sun and Stars. Transuranic 

instance, 11 Li stretches to the extent that its elements, like 92U and 94Pu are used in fission 

3 

volume  is  roughly  10  times  the  volume  of a 

normal  6 Li nucleus  [Tanihata  1996, Sherill 

(reactors) reactions and 2 and 3 H are used 

in fusion reactions. These nuclei have 
235 

 sufficient neutron excess; for 92 U , it is of the 

2008]. Unlike normal nuclei, 
11 Li has  

order of N 
= 

143 
 

  

= 1.554 
 
and 3 H , it is 2. 

diffused surface of neutron matter, and its size 

is of the order of a much heavier 220 Ra nucleus 

[Sherill 2008]. 

Z 92 1 

Thus, if we can produce nuclei with this 

ratio=1.554 or more and smaller Z,  it  should be  
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from    the    above,    we    can    come to   the trial wave can be written as, 

conclusion that the key to the development of future 

nuclear theory and nuclear science will 

 = a + (U + V a + a + ) 0 
......................(1) 

be to create nuclei with large neutron excess, where 
a 

+ 
a 

+ will refer to the neutron-proton 

and study their properties experimentally and k k 

theoretically. pair in the core of the nucleus, and + refers 

 

In this manuscript we have studied  some  of the 

properties ,such as binding energy, binding fraction, 

specific heat, entropy and transition temperature using 

ideas developed by us in an earlier attempt [Khanna et al 

2010] in which  we assumed that a nucleus may be 

composed  of a core of neutron-proton(np-pairs) pairs 

surrounded by an envelop of  unpaired neutrons. We 

have specifically studied the 

to the perturbing neutron that exists in the surface region 

of the nucleus. The perturbation 

 is written as, 

= x 3 + x 4
  .................................................. 

(2) 

where    and  are constants of perturbation  and are 

defined in the section on calculations. The expectation 

value of the perturbation is, 

properties of 11Li and 125In and some isotopes 

3 49    

   

= 0 a (U 

   

+ V a a )( + + + 
) 

+ 

  
for which l k k k k Uk Vk ak ak al 0 

N 
 1.554 

Z 

 

or more. Isotopes whose ratios 

................................ (3) 

 
Where U 2 + V 2 = 1 

 

 
........................ (4) 

k k 

of 
N 

are higher than this will be studied in 

Z Depending upon the values of Uk and Vk , 

another communication. 

 

Theory: 

the trial wave function  can account for the following 

possibilities9. 

Assuming that a nucleus with large neutron excess is 

composed of a core made of n-p 

Uk   = 0 andVk  = 0 .................................... (5) 

pairs, and the excess neutrons constitute the diffused   

neutron  surface,   we   have used  the 

Bogoliubov  technique  [Bogoliubov  1959]   to 

Uk = 1 andVk = 0 

 
U   = andV = 

..........................(6) 

 

..................(7) 

obtain an expression for the energy 
k k 

En of a 

nucleus with mass number A, atomic  number Z (proton 

number) and neutron number N such 

that A = Z + N , and (N − Z ) is large.In this method we 

use a trial wave  function that exhibits the interaction of 

an unpaired neutron in the surface region with the np-

pairs in the core region of a large A nucleus. The 

Possibilities given in Eqs.(5) and (6) lead to 

unacceptable situations since the model is based 

on the existence of np-pairs in the core and 

unpaired neutrons in the surface region. Only the 

possibility given in Eq.(7) leads  to  the existence 

of the term 

1 
a + a + a + 0 which implies that the np-pair 

exists as a separate entity  

 

 

a 
l 
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 2 

2   

Assuming that the neutron and proton in the np-

pair interact with each other harmonically, the 

displacement x will be written as, 

Following rigorous derivations the energy  n 

of the nuclear system can now be written as, 

x = (a + + a) 
 

………........... (8) 

 
E = E 0 + E / 

n n n …………(9) 

=  Z 
 

n  +  
1 

h   +  (  −   )
   1 (6 n 5 + 86 n 4 + 467 n 3 + 1180 n 2 + 1378 n + 585 ) 

  
4 4 2 

 

 

 

Binding fraction f 

 

From Eq. (9) we get an expression for the binding fraction f for n = 0 , when the nucleus is in the 

ground state, i.e., 

f = 
 

n=0 
= 

Z 
 
1 

h + 
 N − Z      

 (585) 
 ......................................................................... (10) 

 
  A 2  

A 
 

8 
4  

 

 
In Eq. (10), the quantity 

 

N − Z 

A 

  

 
is called neutron excess parameter , i.e. 

 = 
 −  

 

 
.................................................................................................................................. (11) 

 

Specific Heat C 
 

To calculate the specific heat C, it is necessary to include the probability amplitude Green’s function 

−h 

factor. The corresponding thermal activation factor is e 
 

 

C  = 
En 

T 

. Using this in Eq. (9) and writing, 

 

 

( )    

 h ( 
 

−h  …………………................ (12) 

= N − Z 
8 4 

 
T 2 

6n5 + 86n4 + 467n3 + 1180n 2 + 1378n + 585)e T
 

 

we get the value of the specific heat C as a function of temperature T.Entropy S.The expression for the entropy S is, 

dS = 
dQ

 or 
 dS =  

dQ  
=  

mCdT .......................................................................................... (13) 
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 

a 
= 

0 

 

= 0 

T T T 
 

where m = mass of the nucleus 
 

Carrying out the integration and substituting for C from Eq.(12) we obtain explicit expression for S. 
 

S = (N − Z )
   

 
h (6n5 + 86n 4 + 467n3 + 1076n 2 + 1378n + 585) 

8 4  

    −h  2 
 

−h  
................................. (14) 

 e T 

 hT 
+ 

h 2 2 
e T  

 

 

Transition Temperature TC Since x 4 must have the dimensions of 

The transition temperature of the nucleus is 

given by 

 C   
T 

(15) 

energy ML2−2 , the dimensions of should 

be ML−2T −2 , since x which is the 

displacement operator has the dimension of 

length L . Therefore,  a parameter  a0    which is 

 T =T 

 
Substituting for C from Eq.(12), we get TC 

from Eq.(15) as 

assumed to be fundamental to the perturbation 

parameters has    been    introduced.  This 

parameter   a0     is  defined  as  the  bond  length 

   = 
h 

C 2 

 
..............................................(16) 

between the nucleons in the nucleus. 

 

Methodology 
 

Our model of the nucleus conceptualizes a large 

neutron excess finite nucleus as comprising a 

core region containing neutron- proton (n-p) 

pairs and a surface region  in which the unpaired 

neutrons exist. The n-p pairs are considered to 

interact harmonically while the interaction of the 

unpaired neutrons with the n-p pairs is 

considered to be 

Results and Discussions 
 

We can define the bond length 

parameter a0 and perturbation parameter 

respectively as, 

 
1 

 

a  = 1.3 10−15 A 3 m ............................. (17) 

 
and 

anharmonic perturbation. This model  has been h 
solved using Bogoliubov method [Bogoliubov 4 

1959] and Eqs.10,  11, 12, 14 and  16 obtained. 
0

 

.........................................(18) 

These relationships describe the properties of   a  

large neutron excess nuclear system. Using these 

relationships explicit parameters are calculated 

and compared with those obtained with other 

models. 

The following values for different physical 

quantities have been used with the derived 

relationships to obtain numerical values of the 

various properties. 

Plank’s   constant/ 2   = h   is   given   as 1.054  

C 
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3 49 66 92 

 
 

The  neutron-proton reduced mass is given Giving appropriate values to A, Z , and N for 

as 8.369 10−28 kg. 

Boltzmann’s constant is given as 

1.3807 10−23 J/K 

the nuclei, 

using 

11 
Li, 

125
In, 

163
Dy and 

235
U and 

 

The angular frequency/ 2 = 

 = 6 1022 S −1 
 

Variation of f with A, Z , N and 

Eq.(10) for f and Eq.(11) for , we get  the values 

of binding fraction and neutron excess 

parameter. The variation of f with A is 

Variation of C with  n 

Using Eq.(9) in Eq.(12), we get, 

shown in Fig.1. h   1   
 C = 


2  n −  n + 

2 
h(19) 

    
 

Eq.(19) can now be used to calculate the 

variation of C with En . Eq.(19) shows that C 

varies directly as the difference of the total 

energy and the proton energy and it should be so 

since as Z increases, repulsive energy between 

the protons increases, and this  changes the total 

energy of the nucleus [Khanna et al 2010]. The 

variation of C with 

E for the nuclei 11Li, 125In, 163Dy and 235U 

Figure 1: Binding fraction 

f (MeV / Nucleon)against mass number A 

n 3 

is shown in Fig.2. 

49 66 92 

 

 
 

Fig.2: Variation of specific heat C (MeV/kg) against excitation energy E (MeV) for 11Li, 125In 
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The   calculated   values   of   specific   heat   C Fig 3: Specific heat C (MeV/kg) at T=TC 

for 163Dy at the various values of excitation against mass number A. 

En are equivalent to those of 235U the reason Variation of S with A and with T 

for this being that the two nuclei have equal 

neutron excess parameters to two places of 

decimal. Thus the curve representing the 

variation of C against En in Fig.2 for 163Dy 

also represents variation of  C  against  En  for 

235U . 

Fig.2 also shows that the specific heat C is large 

for nuclei with large neutron excess parameter ( 

11Li ) at any excitation energy E. 

This effect is shown to be greater by the 

characteristics of the three nuclei as they go 

through the liquid-gas phase transition [Saauer 

1976, Siemens 1964]. 

Using Eq.12 we have calculated the variation of 

C with mass number A and this is shown in 

Fig.3. In this figure, it is seen that the nucleus 

 

Using Eq.14 we have calculated the variation  of 

entropy S (MeV/T) with mass number A for 

nuclei with large neutron excess parameter . 

This variation is shown in Fig.4. 

 

 

 

 

 

 

 

 

 

 
 

Fig 4: Entropy S (MeV/T) at T=TC against mass 

number A 

Fig.4 shows that for large neutron excess 

11 Li with an abnormally high number of systems the entropy S is high for low mass and 

neutrons has a very large specific heat and is 

thus a strongly bound system. The specific  heat 

decreases as the mass number increases because 

the protons increase with mass  number thus 

reducing the total energy of the nucleus. 

decreases with increase in mass number A. 
 

Using Eq.(14), we have calculated the 

variation  of  S  with  T  for   the   nuclei 11Li, 
125In, 163Dy and 235U . The variation of 

S with T for these nuclei is shown in Fig.5 . 
 

 

Fig.5: Variation of entropy S (MeV/kg) with 

temperature T (MeV) for 

 
11 

Li, 
125

In, 
163

Dy and 
235

U . 
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Fig.5 shows that the curves are approximately s-

shaped and similar to those obtained using other 

methods [Khanna et al 2010]. It is also seen in 

the figure that the critical transition temperature 

Tc is at about 20 MeV where the curves have 

maximum gradient and that in 

number A. This proves that the nuclei with 

exceptionally large neutron numbers are more 

strongly bound and less susceptible to disorder 

which is a measure of entropy. 

The variation of entropy S with temperature T 

large neutron excess nuclear systems light for the four nuclei 11Li, 125In, 163Dy and 235U 
3 49 66 92 

nuclei may be identified by their larger rate of was also determined. The super heavy lithium 

change of entropy S with temperature T. 
isotope 

11 Li was found to have the highest 

Transition Temperature TC 

The transition temperature is the temperature at 

entropy S over the range of variation 

considered. This was consistent since it has the 
N 

which phase transition occurs. At the transition largest ratio Z in the group. These excess 

temperature TC the free energies of the two 

phases must be equal and the specific heat must 

show a bump at this temperature. 

Using Eq.16 the value of the transition 

temperature   = 
h 

, and this turns out to be 
C 

2
 

19.602MeV. 

Conclusions 

The calculations of this study provide the result 

neutrons stay in the surface region and contribute 

to the perturbation of the core resulting in an 

increase of perturbation energy and hence an 

increase in entropy [Khanna et al 2010, Saauer 

1976, Siemens 1964]. 

A transition temperature  TC  = 19.602 MeV was 

obtained, and this was within the expected range 

of 10-20MeV as pointed out earlier [Khanna et 

al 2010, Dean 2003, Elliot 2002]. 

that the binding fraction of 
11 Li with large 

Overall,  this  study  emphasizes  that  a nucleus 
with exceptionally large neutron excess will  be 
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neutron excess is very large. This points to the 

fact that the neutrons when added to a nucleus 

contribute a lot of attractive energy and thus 

increases the binding fraction. This result 

confirms the fact that strongly bound neutron 

stars can exist as stable systems. Because of the 

very large binding fraction, such nuclei with 

large neutron excess cannot be used as fissile 

materials. 

The variation of specific heat against excitation 

energy is faster for large neutron excess light 

nuclei than for heavy nuclei for the same 

variation of excitation. Such is the influence of 

the abnormal  neutrons  in  11Li that  its specific 

heat at the liquid gas phase transition [Saauer 

1976, Siemens 1964] is found to be approximately 

six times that of 163 Dy or 235U  . 

The increase observed in the 

specific heat as A increases 

especially for nuclei with large 

neutron excess is in good 

agreement with earlier work 

[Khanna et al 2010, Dean 2003]. 

This study has also revealed that 

the entropy of abnormally large 

neutron excess systems is high 

and decreases with increase in 

massa strongly bound system; 

thus confirming the existence of 

neutron stars as stable systems. 
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