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Abstract 

Sustainable Development Goal (SDG) number 15 focuses on life on land. It requires that we 

protect, restore and promote sustainable use of terrestrial ecosystems, sustainably manage 

forests, combat desertification, and halt and reverse land degradation and halt biodiversity 

loss. The challenge however is lack of sufficient historical land use and land cover 

information that will inform the policy makers the extent of land degradation. Land use and 

Land Cover (LULC) maps of a watershed gives an opportunity to visualise the areas 

covered by each class of LULC in order to quantify the ecological production and related 

ecosystem services generated in a river system. This study was thus carried out in Chania 

river system to demonstrate and validate the use of GIS and Remote sensing techniques as a 

means of providing LULC information. In order to carry out the LULC classification, 

Landsat 8 imageries with 30m resolution for February and March 2016 were downloaded 

from United States Geological Survey (USGS) site. For change detection, Landsat 7 

imagery for February 2005 was used. Using the Environment for Visualizing Images (ENVI) 

software the imageries metadata were converted into reflectance by carrying out 

radiometric calibration. Maximum likelihood and Parallelepiped methods of classification 

were eventually used to carry out the classification. Maximum likelihood assumes that the 

pixel for each class in each band is normally distributed and calculates the probability that 

a given pixel belongs to a specific class. Parallelepiped classification uses a simple decision 

rule to classify multispectral data. If a pixel value lies above the low threshold and below 

the high threshold for all bands being classified, it is assigned to that class. Results between 

the two methods were compared against each other and the best result adopted. Maximum 

likelihood classification yielded a higher accuracy level of 97.99% and a Kappa Coefficient 

of 0.97. Eleven LULC classes were classified. The study revealed that GIS and remote 

sensing techniques provide sufficient means of detecting change in a catchment. In the 

Chania context the results revealed a substantive decline of forest cover by 7.78% in 11 

years with a steep increase in built up areas, areas under tea, coffee and maize. The decline 

in forest cover and the increase in agricultural activity and settlements is an indicator that 

there are negative gains in SDG goal 15 and there is need for further efforts to sustainably 

manage forests. 

Key Words: Change Detection, Land Use Land Cover, Remote Sensing, Supervised  

 Classification, Unsupervised Classification 

Introduction 

Ecosystem services are the benefits that 

human beings derive from the natural 

environment. Millennium Ecosystem 

Assessment (MEA) of 2005 grouped the 

ecosystem services into various broad 

groups: provisioning, regulating, cultural 

and supporting services. The Economics of 

Ecosystem and Biodiversity (TEEB, 2010) 

and the Common International 
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Classification of Ecosystems Services 

(CICES, 2013) further refined the categories 

of ecosystem services and goods. All of 

them maintained provisioning services as 

the key category of ecosystem services. The 

examples of the ecosystem services given 

are biomass (food, raw materials, medicinal 

resources and ornamental resources), water 

for drinking and water for non-drinking 

purposes. 

Shang et al. (2012) recognise watersheds as 

sources of ecosystem services listed in the 

paragraph above. It is however a challenge 

to achieve effective and sustainable balance 

between human and ecological needs for 

freshwater in these watersheds as noted by 

Poff, et al. (2003). The population growth 

and climate change has in addition imposed 

constraints on both spatial and temporal 

distribution of water resulting in increased 

competition for declining water resources 

(UNEP, 2012).  

According to Global Water Partnership 

(2012), the biophysical provision of 

ecosystem services at continental, sub 

global or global scale is in general 

constrained by data availability. An attempt 

to produce a global map of ecosystem 

services was presented by Naidoo, 

Balmford, Costanza, Fisher, Green, Lehner, 

B, and Ricketts, (2008) who succeeded in 

mapping four proxies: carbon storage and 

sequestration, grassland production for 

livestock and fresh water provision. MEA 

(2005) and its follow-up projects such as 

‘The Economics of Ecosystems and 

Biodiversity (TEEB, 2010) raised 

awareness of ecosystem services in the 

scientific community, its stakeholders and 

decision-maker circles (Naidoo, et al. 

2008). In the context of planning and 

decision support however, geographical 

mapping of services has been one of the 

challenges. These maps are key information 

source for decision makers and stakeholders 

(Lautenbach et al., 2012). 

In 2014, the US Geological Survey (USGS) 

and Esri published the global ecological 

land unit map. However, these maps 

provide limited information on the 

ecosystem services provided in each 

individual watershed, having in mind that 

these watersheds have been recognised as 

the source of the services. 

In the Kenyan context, the World Resources 

Institute, the Department of Resource 

Surveys and Remote Sensing, Ministry of 

Environment and Natural Resources, the 

Central Bureau of Statistics, Ministry of 

Planning and National Development, 

Kenya, and the International Livestock 

Research Institute (ILRI) produced the atlas 

of Ecosystems and Human well-being for 

Kenya, in May 2007, based on MEA 

(2005). The atlas focused to integrating 

spatial data on poverty and ecosystems in 

Kenya. The parameters mapped were; 

spatial patterns of poverty and human well-

being, water, food biodiversity, tourism and 

wood. All these parameters were mapped at 

national level without elaboration of the 

ecosystem services that affect human well-

being at the local/watershed level. In the 

year 2011, ILRI did a valuation and 

mapping exercise. However their mapping 

was confined to the Ewaso Ngiro watershed 

biased on livestock and the arid and semi-

arid lands only. 

Chania River has not been exempted from 

the challenges of inefficient and 

unsustainable use of ecosystem services. 

The Lower Chania Sub-Catchment 

Management Plan of 2010 has listed water 

scarcity, pollution, deforestation, siltation, 

over abstraction, water unfriendly 

vegetation, inadequate water infrastructure, 

water related conflicts among other 

problems in the watershed. Several studies 

have been done in the catchment in an effort 

to counter these challenges. Most of the 

studies (Karuri, Wamicha, Maina, & 

Bartilo, 2003; Mwangi, Thiong'o & 

Gathenya, 2012) have focused on pollution. 

In order therefore to clearly understand the 

distribution, capacity, constraints and value 

of ecosystem services, it is necessary to 

carry out a study to quantify and value 

ecosystem services and present them 
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spatially in temporal and spatial form. This 

study therefore focused on the distribution, 

quantities and values of ecosystem services 

and goods on a landscape in temporal and 

spatial scale in the Chania river basin.  

Study Area 

The study watershed lies between 

longitudes 36
0
32’59” E to 37

0
3’1” E and 

latitude 0
0
37’09” S to 0

0
62’10” S. The 

watershed is generally hilly with the 

elevation ranging between 2100m above sea 

level, (ASL) in the upstream to 1500m ASL 

downstream areas. The watershed straddles 

across Mang’u, Chania, Kariara, Gatanga, 

Thamuru, South Kinangop and Thika 

Municipality Divisions. It is drained by 

River Chania which enters the watershed at 

Ragia location in Nyandarua County and 

flows downstream to the confluence of 

Thika and Chania rivers near Blue Post 

Hotel covering a distance of 50km and an 

area of 531km
2
. 

The main economic activities in the 

watershed are cash crop and subsistence 

farming, quarrying, fish farming, livestock 

keeping, cottage industries, horticulture, 

agro-forestry and business enterprises. The 

watershed experiences two rain seasons, 

long rains from March to May (Masika 

Season) and short rains from October to 

December (Vuli Season), receiving an 

average of 1200-1500mm per annum of 

rainfall. The hydrology of the watershed is 

influenced greatly by climate variability, 

topography and land use among other 

factors which have impacted on the resource 

quality and quantity.  

Figure 1. Location Map of the Chania River System 

The Chania River system is served by 

Karimenu, Nyakibai, Mataara and Kimakia, 

as the main tributaries all forming a 

dendritic drainage pattern. 

 

Materials and Methods 

Acquisition of Imageries 

Landsat 8 (Operation Land Imager) imagery 

for 12
th 

March 2016 with 30m resolution 

was downloaded from USGS website. 
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Landsat images were used because they are 

freely available and are of a fairly good 

resolution. Cloud removal was achieved by 

replacing portions of the imagery affected 

by cloud cover with portions of another 

image of 24
th

 February 2017 from the same 

path and row using the Seamless Mosaic 

tool within ENVI. According to Helmer and 

Ruefenacht, (2005), histogram matching 

based on image overlap areas permits 

seamless mosaicking of scenes that have 

undergone cloud removal with regression 

tree prediction. Other studies have also 

found image mosaicking as an appropriate 

way of removing cloud cover from images 

(Suming et al., 2013).  

Figure 2. Landsat Images of Chania Catchment (a) Before and (b) After Cloud and Shadow 

Removal 

LULC Classification 

The cloud free image was pre-processed 

with ENVI software before LULC classes 

were generated. Prior to performing 

supervised classification, the study carried 

out an unsupervised classification of the 

LULC, which is the easiest and quickest 

way of LULC classification. In this system 

the software generates land use classes by 

assigning unique signatures to a pre-

processed imagery giving special regard to 

the number of classes that the user inputs 

into the software. With the unsupervised 

classification however, it was difficult to 

interpret the classes. There was also a 

possibility of the same classes being split 

into different classes. A total of eleven (11) 

LULC classes were generated. Exelis Visual 

Information System (ENVI) Software 

environment was used in this LULC 

classification process. Figure 3 is the LULC 

map that resulted from unsupervised 

classification. 
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Figure 3. LULC Generated from Unsupervised Classification 

Due to the shortcomings of the 

unsupervised classification system, this 

study then utilized supervised classification 

and both the methods for supervised 

classification (Parallelepiped and Maximum 

likelihood) were used. Results between the 

two methods were then compared against 

each other and the best result was adopted. 

Parallelepiped classification uses a simple 

decision rule to classify multispectral data. 

The dimensions of the parallelepiped 

classification are defined based upon a 

standard deviation threshold from the mean 

of each selected class. If a pixel value lies 

above the low threshold and below the high 

threshold for all bands being classified, it is 

assigned to that class. If the pixel value falls 

in multiple classes, ENVI assigns the pixel 

to the first class matched. Areas that do not 

fall within any of the parallelepiped classes 

are designated as unclassified. Maximum 

likelihood classification assumes that the 

statistics for each class in each band are 

normally distributed and calculates the 

probability that a given pixel belongs to a 

specific class. Unless you select a 

probability threshold, then all pixels will 

remain classified. Each pixel is assigned to 

the class that has the highest probability 

In using supervised classification of LULC, 

actual land cover and land uses were 

identified in the field from the areas mapped 

in Figure 5 below. These guided the 

generation of training sites. The training 

sites were areas with known LULC that the 

classification software would use in 

assigning LULC class to all pixels in the 

catchment.  In order to carry out supervised 

classification, Regions of Interest (RI) were 

first generated using the training data for the 

classification of both methods. The RIs 

created were later on used to perform both 

Parallelepiped and Maximum likelihood. 

This was done to ensure that the same input 

parameters were observed so as to highlight 

the differences with the two outputs 

generated. 

Since the same RI was used for the two 

methods, the output files obtained the same 

symbology, thus this was easy in comparing 

the results generated for the two land use 

maps. Figure 4 indicates the visual 

differences obtained from the two types of 

supervised classification. 
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Figure 4.  Comparison between Parallelepiped and Maximum Likelihood Classification 

From Figure 4 above, Maize plantation 

symbolized as green is only distinct and 

visible through Maximum Likelihood 

method. Parallelepiped system of 

classification usually tends to generate lots 

of unclassified data depicted as black 

portions. 

 

Ground Truthing 

Ground truthing was necessary in order to 

confirm that the classification methods 

yielded results that match the actual 

situation on the ground. Ground truth RIs 

were created in ENVI software from ground 

truth data that had been collected during 

training data collection exercise (Figure 5).  

 
Figure 5. Ground Truth and Training Points for Each Class 
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Participatory GIS where interviews and 

focus group discussions were carried out 

with the community as well in order to 

confirm the LULC classes as well as 

shedding light on the validity of the change 

detection findings of this study. 

 

 
Figure 6. Focus Groups Discussion for PGIS in Mbugiti, Chania (a) men group (b) women 

group 

To understand the differences between 

Parallelepiped and Maximum Likelihood 

better, the study generated confusion matrix 

(also referred to as contingency matrix). 

Table 1 below illustrates overall accuracy 

and the Kappa coefficient. It also indicates 

percentage accuracy for each and every 

class generated, both for producer and user 

accuracies. 

Table 1. Contingency Matrix Obtained through Maximum Likelihood Classification 
Overall Accuracy = (2980/3041)       97.9941% 

Kappa Coefficient = 0.9698 

Class Producer 

Accuracy (%) 

User Accuracy 

(%) 

Producer Accuracy 

(Pixels) 

User Accuracy 

(Pixels) 

Water 99.88 99.77 855/856 855/857 

Coffee 94.61 100.00 228/241 228/228 

Tea 80.00 77.78 8/10 7/9 

Built up 100.00 100.00 165/165 165/165 

Mature Forest 98.88 100.00 1497/1514 1497/1497 

Young Forest 95.65 97.78 132/138 132/135 

Shrub Vegetation 81.48 82.22 22/27 37/45 

Maize Plantation 81.81 81.81 9/11 9/11 
Bare Land 71.42 75.00 5/7 15/20 

Mixed Crops 88.14   94.55 52/59 52/55 

Wetland 92.31 84.21 12/13 16/19 

 

Table 2. Contingency Matrix Obtained through Parallelepiped Classification 
Overall Accuracy = (2791/3041)       91.7790% 

Kappa Coefficient = 0.8773 

Class Producer 

Accuracy (%) 

User Accuracy 

(%) 

Producer Accuracy 

(Pixels) 

User Accuracy 

(Pixels) 

Water 99.07 99.88 848/856 848/849 

Coffee 100.00 96.02 241/241 241/251 
Tea 100.00 5.18 10/10 10/193 

Built up 99.39 100.00 164/165 164/164 

Mature Forest 97.29 100.00 1473/1514 1473/1473 
Young Forest 3.62 55.56 5/138 5/9 

Shrub Vegetation 40.74 36.67 11/27 11/30 

Maize Plantation 0.00 0.00 0/11 0/0 
Bare Land 0.00 0.00 0/7 0/0 

Mixed Crops 66.10 100.00 39/59 39/39 

Wetland 0.00 0.00 0/13 0/0 

(a) (d)

b) 

(b) 
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Maximum Likelihood classification method 

produced more accurate results following an 

overall accuracy of 98.0% versus 91.8% 

produced from the output classes for 

Parallelepiped classification. Another 

indication on accuracy while performing 

image classification is the Kappa 

coefficients that range between 0.0 – 1.0, 

with values closer to 1.0 indicating high 

level accuracy of image classification. 

Therefore, from the contingency matrix 

generated by the study, the Kappa 

coefficients obtained from parallelepiped 

classification was 0.88, with Maximum 

likelihood classification method having a 

Kappa coefficient of 0.97, also confirming 

that Maximum likelihood had the highest 

accuracy. Following the above comparison 

and the results of ground truthing, the study 

used the output generated from Maximum 

likelihood classification. The output LULC 

file generated was clipped against the study 

area as illustrated from Figure 7. 

 
Figure 7. Land Use Land Cover Map Adopted for 2016 

Finally, the generated LULC map was vectorised to pave way for the determination of the 

area of each land use and land cover class as illustrated in Figure 7. 

 
Figure 8. Vectorised Classes for 2016 
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To detect the change in land use and land 

cover in 11 years, a LULC map for the year 

2005 was generated following the same 

process described above. Following the 

accuracy of the results that yielded from 

land use land cover classification for the 

period February 2016, a similar approach 

was utilized in processing the Landsat 7 

imagery for February 2005, and Maximum 

likelihood supervised classification was 

used. The study utilized the same training 

data as the one used for Landsat imagery 

dated February 2016, supervised 

classification paying attention to the 

consistency of the colour of the imagery in 

order to avoid using the sites that land use 

and land cover have already changed as 

training sites. 

 
Figure 9. 2005 Land Use Land Cover map 

 
Figure 10. 2005 Land Use Land Cover Areas Generated 

Results and Discussion 

The study established that in 2016, shrub 

vegetation had the highest area of coverage 

covering 20.41 % of the total area. This 

high percentage is attributed to the fact that 

in classifying shrub vegetation, the 

signatures captured for this class would be 

the same for orchards, shrubs in the forests, 
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along rivers, in coffee and tea plantation as 

well as irrigated farms. The classification 

software lumps this land uses as shrub 

vegetation. Built up areas and mature forest 

were the next LULC classes that covered 

the highest areas covering 15.12% and 

13.5% of the total area respectively. Water 

had the least area of coverage covering 

0.58% of the total area. Table 3 is an 

illustration of the areas in hectares 

generated for the classes within ArcGIS for 

the year 2016.  

In the year 2005, mature forest had the 

largest area of coverage (19%). The next 

LULC which covered large areas were 

shrubs, mixed crops and young forest which 

covered 15.05%, 13.76% and 12.33% 

respectively. 

By comparing the two columns with areas 

of coverage in 2005 and 2016 in Table 3 

below, the study was able to quantify land 

use change both by hectares and 

percentages as illustrated in the last column 

of the table. 

Table 3. Land Use Change for 2005 and 2016 

CHANIA LULC 2005 CHANIA LULC 2016 LAND USE CHANGE 

CLASS AREA_HA CLASS AREA_HA INCREASE (+) / 

DECREASE (-) 

Bare Land 11382.5 Bare Land 5229.5 -11.59% 

Built Up 5019.35 Built Up 8030.64 +5.67% 

Coffee 4839.98 Coffee 2734.28 -3.96% 

Maize Plantation 1014.33 Maize 2750.8 +3.27% 

Mature Forest 7846.88 Mature Forest 7170.32 -1.27% 

Mixed Crops 5693.44 Mixed Crops 5035.04 -1.24% 

Shrub Vegetation 6229.44 Shrub Vegetation 10836.6 +8.67% 

Tea 1682.74 Tea 6225.15 +8.55% 

Water 115.33 Water 309.517 +0.37% 

Wetland 2700.56 Wetland 3142.98 +0.83% 

Young Forest 5098.66 Young Forest 1643.85 -6.51% 

From Table 3, the built up areas increased 

by 5.7% as a result of increased human 

settlement. Increased human settlement is 

explanation as to why there was drastic 

decrease in the area under bare land which 

experienced a drop of 11.6% in terms of the 

areas covered. From the focused group 

discussions, coffee farming has become 

unattractive due to poor market prices. This 

has led to many people adopting tea farming 

as a source of income. This is the reason as 

to why we have a sharp increase in the area 

under tea (8.7% increase).  The study 

however established that there was a 

decrease in the areas under mature and 

young forests and a marginal increase in the 

area under wetlands. This is an indicator of 

environmental degradation. This therefore 

means that, there is destruction of the 

natural infrastructure that support catchment 

ecosystems in terms of water storage, rain 

catchment and flood protection. This 

degradation has led to reduced rainfall trend 

as shown in the figure below. 
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Figure 11. Reducing Rainfall Trend 

Conclusion 

With open source remote sensing data such 

as Landsat, it is possible to detect the 

disturbance in the ecosystem (e.g. forest 

disturbance). From the study, it was clear 

that Maximum likelihood system of 

supervised classification provides the best 

means for LULC mapping and subsequently 

detecting change in a catchment. In the 

Chania catchment, it is clear that there has 

been a downward trend in terms of area 

covered by important natural infrastructure; 

forests, wetlands and water, while there has 

been increased settlements as depicted by 

the increase in built up areas and shrinkage 

of bare land. This trend has already had an 

effect on the amount of rainfall received and 

also exposes the catchment to the risk of 

flooding due to reduced natural 

infrastructure that support ground water 

storage. The policy makers should therefore 

pay attention to conservation activities in 

particular targeting forests and wetlands. 

Afforestation efforts and wetland protection 

should be given priority in the Chania 

catchment. The LULC change detection 

should also be done periodically in order to 

monitor the gains or losses made in these 

interventions. These efforts will restore and 

promote sustainable use of terrestrial 

ecosystems, sustainably manage forests, 

combat desertification, halt and reverse land 

degradation, biodiversity loss in the 

catchment and subsequently contribute to 

the attainment of the SDG goal 15. 
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